
tm – Technisches Messen 2022; aop

Gertjan Kok*

The digital transformation and novel calibration
approaches
Die digitale Transformation und neuartige Kalibrierungsansätze

https://doi.org/10.1515/teme-2021-0136
Received December 17, 2021; accepted February 28, 2022

Abstract: In this paper we describe how the digital trans-
formation (i. e., the adoption of digital technology) of so-
ciety affects National Metrology Institutes like VSL.1 This
digital transformation has many different aspects of so-
cial, economic and technical nature. In this paper we will
mainly focus on somemathematical and statistical aspects
which are important for modelling measurement instru-
ments and analyzing measurement data. We will discuss
how modern techniques like artificial intelligence, digital
twins, digital calibration certificates and the introduction
of the new definition of the SI system of units affect na-
tional metrology institutes. Important changes are the us-
age of complex algorithms andmodels inmeasurement in-
struments, as well as the introduction of novel calibration
approaches and the digitalization of the services provided
by NMIs.

Keywords: Digital transformation, digitalization, calibra-
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Zusammenfassung: Dieser Beitrag beschreibt, wie die di-
gitale Transformation (d. h. die Einführung digitaler Tech-
nologie in der Gesellschaft) nationale Metrologieinstitu-
te wie das VSL beeinflusst. Die digitale Transformation
hat viele verschiedene Aspekte von sozialer, wirtschaft-
licher und technischer Natur. Dieser Artikel konzentriert
sich hauptsächlich auf einige mathematische und sta-
tistische Aspekte, die für die Modellierung von Messin-
strumenten und Analysieren von Messdaten wichtig sind.
Es wird diskutiert, wie moderne Techniken wie künstli-
che Intelligenz, digitale Zwillinge, digitale Kalibrierungs-
zertifikate und die Einführung der Neudefinition des SI-
Einheitensystems sich auf nationale Metrologieinstitute
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auswirken. Wichtige Änderungen betreffen die Nutzung
komplexer Algorithmen undModellen in Messgeräten, so-
wie die Einführung neuartiger Kalibrierungsansätze und
dieDigitalisierungder vonNMIs erbrachtenDienstleistun-
gen.

Schlagwörter: Digitale Transformation, Digitalisierung,
Kalibrierung, künstliche Intelligenz, virtuelles Instru-
ment, digitaler Zwilling, neues SI, Self-X-Lösung, Metrolo-
gienetzwerk.

1 Introduction

In society a digital transformation is taking place. This
transformation also affects National Metrology Institutes
like VSL in various ways. This paper addresses some
mathematical and statistical aspects of this transforma-
tion which are relevant for modeling measurement instru-
ments and analyzingmeasurement data. Novel algorithms
developed by the artificial intelligence (AI) community
have found their way into measurement instruments, and
themathematicalmodels used inside instrumentationand
for data processing can be very complex [15, 1, 39].

Advanced mathematical models of measurement in-
struments have led to so-called ‘Virtual Instruments’ and
‘Digital Twins’ [11, 16]. For somemeasurement instruments
these models are essential to get a correct measurement
value, for others they enable to calculate a reliable value
of the measurement uncertainty.

At the hardware side the number of sensors providing
measurement data is rapidly increasing, and modern ICT
solutions make it possible to continuously read out large
numbers of sensors real time (‘Internet of Things’) and
store large amounts of measurement data (‘big data’). This
requires an adaption of metrology to the digital age [6]. To
be able to keep up with the established concept of metro-
logical traceability of sensors shorter and cheaper trace-
ability chains are required. The redefinition of the SI sys-
tem of units in terms of natural constants has made ‘one-
step’ traceability chains conceptually possible [35]. New
technologies based on quantum technologies are being
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developed to implement these newdefinitions in small, af-
fordable primary standards [28].

Finally, the service ofmetrology institutes is shifting to
a more digital form. A first step was to replace paper cer-
tificates by digitally signed ones. The new development is
to make the certificates fully machine readable, and to de-
velop a full software chain that produces, reads and uses
these digital certificates [33, 14, 13].

VSL [37] is the National Metrology Institute (NMI) of
the Netherlands and as such it maintains the national
measurement standards. NMIs like VSL make it possible
that measurement results can be presented in an ‘abso-
lute’, traceable way. Traceabilitymeans that results are ex-
pressed in the SI system of units, can be linked back to pri-
mary standardswhich realize the SI units from their defini-
tions, whereby each measurement result is accompanied
by a measurement uncertainty.

In this paper we will present some important aspects
of this digitalizationofmetrologyand thenovel calibration
approaches that accompany it.

2 Virtual instruments and
metrological digital twins

Advanced mathematical models of measurement systems
are becoming more and more widespread. Some of them
have been around already for some time, others are
more recent. In the metrological community these mod-
els, which should also include explicit modeling of error
sources, have usually been called ‘Virtual Instruments’.
More recently, the concept of ‘digital twins’ has been in-
troduced. According to [4], a digital twin is defined as
“a virtual representation that serves as the real-time digi-
tal counterpart of a physical object or process.” Thismeans
that the state of the mathematical model should be up-
datedwith the state informationwhich should beprovided
by the instrument. This involves more than only the mea-
surement result itself, but could include, e. g., the position
of amoving frameof themeasurement instrument or its in-
ternal temperature. Some examples of digital twins in in-
dustrial contexts can be found in [16].

An example of a virtual instrument is the Virtual Coor-
dinate Measurement Machine (VCMM) [11]. In a VCMM the
machine mechanics are carefully modelled including all
potential error sources like ruler errors, squareness, flat-
ness, probe shape and temperature induced errors. The
magnitudes of these error sources must be determined by
means of a traceable calibration. In a next step the un-
certainty of the parameter(s) of interest is calculated us-

Figure 1: Qualitative difference between a virtual instrument and a
digital twin.

ing a Monte Carlo method, i. e., by simulating different re-
alizations of the individual error sources and evaluating
the spread of the calculated value of the measurand. The
measurand could be, e. g., the radius of ameasured sphere
or lens, which is fitted through a measured point cloud
of (x, y, z)-coordinates. If this virtual instrument is to be
transformed to a digital twin, the actual position of the
moving parts of the instrument should be measured and
transmitted to the digital model. If the measurement task
is supervised and action should be taken based on what is
happening, then this digital twin extension can be worth-
while. In the case of a relatively simple pre-programmed
measurement task, an extension of the virtual instrument
to a digital twin may not be worthwhile. In Figure 1 the
qualitative difference between a virtual instrument and a
digital twin is schematically illustrated. Whereas the vir-
tual instrument only receives and processes themainmea-
surement data of interest and calculates the measurand
value and uncertainty, a digital twin is aware of the com-
plete status of the instrument and can act based on all the
sensor data it receives. In the case of a CMM one could
imagine that the digital twin proposes or autonomously
decides to measure more points in a certain area based on
the measurement data, or pause the measurement if it de-
tects temperature gradients, as it is aware of certain tem-
perature induced deformations in the instrument. These
decisions are translated into outputs or system control
data that are passed to the actuators of the instrument.

Calculating the uncertainty of a measurand with the
help of a virtual instrument usually requires many model
evaluations, in particular when the Monte Carlo method
is used. With the increase of processing speed of modern
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Figure 2: Left: Example of geometrical parameters characterizing a periodic sample: period length p, width w, height h and side wall angles
α and ß. Centre: Simulated image for a given set of parameter values. Right: measured camera image.

computers, it is now also possible to use the virtual instru-
ment approach for computationally more intensive prob-
lems. E. g., it has been used at VSL to assess the uncer-
tainty of a flowmeter (sonic nozzle) using a computational
fluiddynamics (CFD)model of theflowand randomly vary-
ing the input parameters [21]. A study regarding systematic
effects involving various flow patterns was performed by
the German national metrology institute PTB in [38] for an
ultrasonic and an electromagnetic flow meter. A next step
of this study could be to construct virtual instruments for
such flowmeters that estimate the uncertainty of the mea-
sured flow rates as function of the measured data and all
flow profiles that are consistent with the measured data
(e. g., the measured fluid speed for each of the ultrasonic
paths).

In a recently started project [2] a virtual instrument for
a scatterometer is being developed, which involves solv-
ing Maxwell equations for electromagnetic waves propa-
gation. Themeasurement principle of this scatterometer is
described in [23]. In this particular set-up a camera image
of the sample ismade fromwhich the geometrical parame-
ters of the periodic sample are being estimated. In Figure 2
examples of geometrical parameters are shown together
with simulated and measured images.

Parameter estimation is done by model inversion in
the following way. The forward model, which is based
onMaxwell equations for electromagnetic waves propaga-
tion, has as output the image that is obtained for a given
set of geometrical parameters of the sample. By using an
optimization method, the geometrical parameters are se-
lected thatminimize the difference between simulated and
measured image. In an additional loop some parameters
modeling uncertainties (e. g., imperfections of the instru-
ment) canbe varied, and thiswill then give the uncertainty
of the measurand (which in this case can actually consist
of up to five parameters if they are all assumed unknown).
As the inner optimization loop is relatively time consum-

ing, it can be very interesting to use a well-trained neural
network (or another appropriate mathematical function)
as fast surrogate model.

Another application for such a fast surrogate model
would be the case in which the scatterometer measure-
ment is used for in process control of a production ma-
chine. In this case the measurement result should become
available within a few seconds. In Figure 3 the structure of
the uncertainty calculation for the different cases is graph-
ically displayed. The main difference is whether there is a
computationalmodel for calculating themeasurand value
y from the data x and some parameters a, i. e., y = f(x, a),
or if there is a computational model for calculating the
(simulated)measurementdatabasedonanassumedvalue
for the measurand, i. e., x = g(y, a).
3 Model based measurements,
data driven models and artificial
intelligence

3.1 Physical models

In simple metrological measurements the relationship be-
tween the actual measurements and the value of the mea-
surand is straightforward and well understood. E. g., one
canmeasure the lengths of the sides of a square andmulti-
ply them to get the area of the square. There also exist less
straightforwardmeasurement models. In VSL’s scatterom-
eter monochromatic light is focused on a periodic sample
(e. g., a grating) and the refracted light is measured by a
camera. Based on the recorded light intensities geometri-
cal and/or optical parameters (e. g., refractive indices) of
the sample are determined using a computational model
of the measurement set-up based on Maxwell equations.
Actually, the shape of the geometry is parametrized, and
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Figure 3: Structure of the uncertainty calculation by means of a virtual instrument. Left: Structure for the CMM and the sonic nozzle. Right:
Structure for the scatterometer.

the best fit parameters are determined by an optimization
procedure, i. e., the parameter values that result in the best
correspondence of the simulated imagewith themeasured
image. The problem is thus an inverse problem and due to
the repetitive solution of the Maxwell equations it is com-
putationally expensive and therefore relatively time con-
suming. As the complex mathematical model is an essen-
tial part of the measurement, we call this a model-based
measurement.

3.2 Data driven models using artificial
intelligence

For a physically inspired model to be an accurate repre-
sentation of the reality, it is not only necessary to under-
stand the underlying physical principles, but it is equally
important to be very careful in the bookkeeping of the nu-
merical values, signs, orientations of coordinate frames,
etc. It can thus be time consuming to assure that the pre-
dictions of the physics-based model are correct. A final,
empirical correction may still be needed. Furthermore, an
accurate physics-based model can be computationally ex-
pensive and therefore slow, which is a problem when it
needs to be evaluatedmany times, e. g., in an optimization
routine, or when results are needed in real-time, e. g., in a
feedback control loop of a machine. In these cases, more
simple surrogate models can be used. Besides using more

classical numerical methods, these substitute models can
now also be based on techniques from the area of artifi-
cial intelligence (AI), be completely or partly data driven
and they canbemuch faster (once themodel has been con-
structed) than complex physical models. A popular choice
are neural networks which are especially reputed for good
accuracy in image processing. In some cases, data driven
models are more precise in comparison to physical mod-
els, which are often only an approximation to the real pro-
cess.

In a joint research project [31] the possibility of con-
structing a fast neural network to complement the much
slower physics-based model for a scatterometer is being
explored. The prior training of the neural network is a slow
process andwill be basedona largenumber of simulations
using the physics-based model. Potentially the architec-
ture of the neural network can be optimized by using infor-
mation about the physical process, i. e., creating a ‘physics
informed neural network’ (PINN), [29]. There is an active
research community dealing with this type of networks
[24]. One approach to make the neural network aware of
the physical equations governing the process is to explic-
itly take them into account in the loss function that ismini-
mizedwhencalculating theoptimal internal parameters of
the network. In this way the parameters are not only tuned
to the specific data at hand, but also the structure of the
underlying equations (e. g., partial differential equations)
is taken into account. This can make the network more ro-
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Figure 4: (Taken from [29]) Graphical representation of one type of Physically-Inspired Neural Network (PINN): the loss function that is used
for optimizing the model parameters, is extended with a loss part related to the fulfillment of the governing physical equations (in this ex-
ample the Navier-Stokes equations for fluid flow).

bust and the predictions for fresh data outside the domain
covered by the training data can be more reliable. See [18]
for an example involving the seismicwave equation.When
the physical equations are not knownbeforehand, one can
also use a neural network to discover these equations from
the data. See [3] for an example how this can be done.

This approach can also help to make the results pro-
duced by the neural network more explainable. There is
much current research in the “XAI-community” (eXplain-
able Artificial Intelligence) to methods for making the out-
put of AI algorithms better interpretable. So instead of
treating an AI algorithm as a black box for which it is un-
clear why the algorithm arrived at a certain output, the so-
lution should be explainable to humans. Wewill not cover
this research field in more detail here. In reference [32]
more details can be found.

3.3 Other applications involving artificial
intelligence

The last section dealt with replacing computationally ex-
pensive physical models by much faster neural networks
and possibly other AI methods. Another application of AI
methods is to improve the performance of low-grade in-
struments. Such instrumentsmay be sensitive to a lotmore
than only the physical quantity of interest. By measuring
these influence quantities and fitting a complex AI based
mathematical model, the performance of the instrument
can be considerably improved. A good example for this
approach is the case of low-cost air quality sensors. By
measuring temperature, pressure, relative humidity and
the amount-of-substance fractions of some other gases by

means of some additional sensors, and fitting a neural net-
work to the training (calibration) data, the uncertainty of
the amount-of-substance fraction of the target gas can be
reduced considerably [36].

In the health sector AI algorithms are becoming more
wide-spread and this also includes the measurement in-
struments used, especially the ones in the field of medical
imaging. There are evenmethods to replace completemea-
surement systemsbyother systems combinedwithAI. This
is the underlying idea for synthetic CT scans that are pro-
duced based on MRI images [5]. For the medical diagnosis
a CT scan is desired, involving an exposure to potentially
harmful radiation for the patient. However, the patient is
measured using MRI, which is much less harmful. Based
on a large set of training data, the AI algorithms are now
able to construct a synthetic CT image, which gives the
medical doctor already valuable information, anda real CT
scan may not always be needed anymore. It is well possi-
ble that in industrial settings virtual or synthetic measure-
ments can be performed whereby certain measurement
instruments become obsolete as they can be replaced by
other measurement instruments in combination with AI.

Yet another application involvingAI thatmetrology in-
stitutes are looking into are the measurements made by
autonomous vehicles (AVs) [12]. By means of complex AI
algorithms camera images are processed and fused with
lidar, radar and inertial measurement unit data resulting
in a measured distance to an object, which is expressed in
the SI unit meter [22]. The question is what the measure-
ment uncertainty of the reported distance is. Classical sen-
sitivity analysis and propagation of uncertainties through
the model is not fully feasible and satisfactory, as it is not
always clear how to perturb the input quantities in a real-
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istic andmetrological sound way (e. g., how to perturb the
camera image). It’s also not clear what the boundaries of
the tested input domain exactly are. Are specific measure-
ment conditions interpolation or extrapolation [25] and is
the outcome of the algorithm trustworthy or not at all?

Some more examples of metrological applications in-
volving AI are the usage of a deep neural network for com-
putational optical formmeasurements [15], invertible neu-
ral networks in relation with uncertainty calculations for
grazing incidence X-ray fluorescence [1] and a deep neural
networkused for calibratingmisalignments in the interfer-
ometric measurement of freeform surfaces [39].

3.4 Implications for traceability and
calibration

There is a considerable implication of the usage of ad-
vancedmathematicalmodels and black boxAI-algorithms
to the traceability and the calibration of instruments. In
the most classical setting, the measurement instrument
measures the one-dimensional quantity of interest in a di-
rect way (e. g., length measurement with a caliper) and
the calibration consists of simply comparing twonumbers.
The calibrationpoints are takenat regular steps in an inter-
val of interest, and the calibration is assumed to be valid
for the full interval based on mathematical interpolation
of the calibration results at the measurement points. This
establishes the core of the traceability of the instrument.

In a CMM the diameter of a sphere is not directly mea-
sured, but derived from the measured (x, y, z)-coordinates
of a number of measurement points. The function to cal-
culate the best-fit sphere from a point cloud is well under-
stood. By means of a VCMM, or even analytically in the
case of a least squares fit, the uncertainty of the sphere ra-
dius can be assessed. The values of parameters for the un-
certainty calculation by means of the VCMM can be deter-
mined by means of a calibration of the individual sources
of uncertainty of the CMM in a part of or in the entire ma-
chine volume. It is also clearwhat interpolationmeans: us-
ing the CMM in the calibrated and characterized measure-
ment volume. As long as the VCMMmodel is validated, the
calculated uncertainties are reliable, and the extend of the
traceability is clear.

The measurement of geometrical parameters by
meansof a scatterometer ismore involved. The inversionof
the model xmeas = g(y, a) can be ill defined and multiple,
quite different, solutions may exist for the vector-valued
measurand y. Prior knowledge on the approximate range
of y is usually needed. If this prior knowledge is avail-
able, the uncertainties U(a) of the influence parameters a

are relatively small and the physics based mathematical
model based on the Maxwell equations is used, the cal-
culated uncertainty may still be deemed appropriate as
long as one has assured that all sources of uncertainty are
covered by the model. So, a traceable calibration using a
scatterometer is theoretically possible. (Note that assuring
that the uncertainty budget for a scatterometer is com-
plete and accurate is a challenging task and part of the
work in [2].)

In the case of using black box AI-algorithms for calcu-
lating the measurand, it may not be clear if the algorithm
behaves as expected for new input and if it follows sound
physical principles. For the scatterometer case it is not di-
rectly clear if an algorithm trained with simulated images
will work in the samewaywith slightly different measured
images. And if it works with a specific set of camera im-
ages, will it still work if some camera settings like the con-
trast level are changed? This type of questions becomes
even more important in the case of autonomous vehicles
which may identify objects and determine the distance to
them based on camera vision only [34]. If the AI model
works for images taken under specific circumstances, in
which circumstances is it still expected to work, and when
possibly not? If a measurement device using black box AI
algorithms is calibrated, to what extent is it traceable, and
what means interpolation? Can unusual input be detected
[25]? Which sources of uncertainty need to be accounted
for [20, 10]? It is clear that a substantial research effort
is needed to fully answer these and similar questions. In
the document [19] the strategy of PTB regarding AI is pre-
sented.

4 Quality control of measurement
instruments and self-X-solutions

In the last section we presented some examples of how AI
methods can assist in the calculation of the measurement
results. In this section we look at aspects related to quality
control and self-X-solutions.

4.1 Quality control of measurement
instruments

AI-algorithms can be used for quality control of measure-
ment systems by means of a meta-analysis of the avail-
able measurement data. If a substantial amount of well-
structured measurement and/or calibration data is avail-
able, unsupervised AI algorithms can be used to find pat-
terns and clusters in the data. This can give new insights
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related to relationships betweenmeasurement results and
measurement conditions, conditions in which measure-
ments are likely to fail, and insights in the health of the
measurement instrument itself. E. g., a need for recali-
bration of the instrument could be discovered before its
deadline based on a fixed time schedule. A necessary step
needed for fully releasing the potential of AI algorithms
for quality control is a using consistently a well-structured
uniform data format for saving all data and storing them
in a systematic way.

4.2 Self-X-solutions

Another way of improving the quality control of measure-
ment instruments is by using so-called self-X-solutions.
In general, ‘self-X’ can indicate a great variety of capa-
bilities: self-configuring, self-healing, self-correcting, self-
optimizing, self-provisioning, self-managing, self-healing,
self-protection, self-calibrating, etc. [17]. Clearly, not all
self-X features are relevant for measurement instruments,
and the underlying ideas covered by the self-X terminol-
ogy are not all entirely new. Self-correcting of a sensor
in a network can be realized when redundant informa-
tion is present, at least part of the time [30]. The sensor
can compare its measured value with the mean of a large
set of neighbouring measurement values or with the re-
sult of one particular reference sensor and correct its re-
sults. An example is the self-correction of air quality sen-
sors. If it is assumed that pollution levels are homoge-
neous around 3 a.m. due to the absence of people and/or
traffic, the correction factors (e. g., the background offset)
of the low-cost air quality sensors can be adjusted by com-
paring the measurement results with the results of a high-
grade reference station. A variety of self-diagnosis and
self-calibration strategies for low-cost air quality sensor
networks can be found in [27].

The term self-calibration may refer to the possibility
of calibrating an instrument by itself in the field. E. g., an
A/D-converter of a temperature measurement instrument
can be calibrated by measuring a set of built-in, stable re-
sistances at regular time intervals. This can be useful, as
the A/D converter may be most prone to drift. However,
the resistors themselves will have to be calibrated at some
(longer) time intervals as well, so this doesn’t completely
replace calibration at a reference laboratory. (In this ex-
ample the measurement element of the device (e. g., the
100 Ohm resistance of a Pt100 sensor) will need recalibra-
tion as well at some point in time.)

Complete self-calibrating (traceable) systems require
that primary measurement standards that realize the SI

units are integrated into the measurement device. This
is impossible for the traditional way of realizing these
units, as this is done using large and expensive measure-
ment set-ups in national metrology institutes. However,
some NMIs like NIST in the ‘NIST on a chip’ program [28],
are exploring the possibility of making much smaller and
cheaper primary measurement standards that operate ac-
cording to the principles of quantum physics. The result
would be that primary realizations of the SI units can be
available ‘anywhere and anytime’, be it probably with a
larger uncertainty than what is possible in an NMI. Using
such small primary standards, an instrument can be truly
‘self-calibrating’. This leads to the concept of ‘one-step-
traceability’: instead of having a (potentially) long chain
of comparison measurements between the references and
working standards at an NMI, standards at intermediate
calibration laboratories and the instrument of interest it-
self, the instrument is directly (in ‘one-step’) compared to
a primary standard.

Note that the redefinition of the SI system of units in
terms of fundamental natural constants in 2019 [35] has
made this one-step-traceability idea conceptually possi-
ble. E. g., before 2019 the reference for the kilogram was
a physical weight stored at the BIPM laboratories in Paris,
which made ‘one-step-traceability’ by definition impossi-
ble outside theBIPM, at least for quantities involving theSI
unit kilogram. Traditional traceability chains can be long
and labor intensive to realize. In the current situation in
which large numbers of sensors with a somewhat higher
measurement uncertainty are being installed in industry,
smart cities and at home, future ‘SI on a chip’ solutions
may offer a reasonable solution for realizing SI traceabil-
ity at an affordable cost.

5 Digitalization of NMI services and
European cooperation

In this section we present how NMI services are being dig-
italized by developing digital calibration certificates, and
how the digital transformation of metrology institutes is
helped by European cooperation initiatives.

5.1 Digital calibration certificates

In the realm of the digital transformation of metrology in-
stitutes the services provided by NMIs become more dig-
italized. Digital client portals where a customer has an
overview of his order and certificates are being created.
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The paper calibration certificate has remarkably long sur-
vived in our modern world, but finally it seems to get re-
placed by a digital counterpart. At this moment most digi-
tal certificates are digitally signed pdf-files, which cannot
be interpreted by a machine in a standardized way. A Eu-
ropean effort has been made in the SmartCom project [33]
to design a structured andmachine-readable format by us-
ing xml-files. Using this scheme and some supplementary
domain specific conventions NMIs will be able to produce
digital certificates that are automatically interpretable by a
computer and exchangeable (i. e., it doesn’t matter which
NMI has provided the certificate, the data format remains
the same). To take really advantage of these digital cer-
tificates, the customer must implement some software at
the receiving side so that the data from the calibration cer-
tificate can be automatically read, processed, and stored.
This latter development still seems to be largely ‘work in
progress’.

5.2 European Metrology Network for
mathematics and statistics

There is a large need for research in the area of digitaliza-
tion, novel technologies andAI regardinghow these devel-
opments can be integrated in the metrological landscape.
In order to come to a common European approach, prior-
itize the research needs, share the workload and prevent
duplication of work inmetrological research, the umbrella
organization of European NMIs Euramet [9] has created
several ‘EuropeanMetrologyNetworks’ (EMNs). The topics
of advancedmathematical modeling, uncertainty calcula-
tions and artificial intelligence are being addressed by the
EMN for Mathematics and Statistics in Metrology (MATH-
MET) [8]. The EMNMATHMET is actively engagingwith in-
dustry, academia and research institutes in a stakeholder
consultation process which will be used to create a strate-
gic research agenda. Thiswill yield a roadmap for prioritiz-
ing the research topics. TheEMNmembers are also actively
discussing a quality management system that can be used
to assess software and data in order to come to a joint un-
derstanding and definition of software and data quality.
Joint research proposals of NMIs, academia, research in-
stitutes and industry are submitted in the European Part-
nership for Metrology program [26] in order to get the nec-
essary funding to make the roadmap indeed happen and
produce the necessary bits of knowledge still missing for
a fruitful digital transformation of the metrological land-
scape.

As noted earlier, the digital transformation of metrol-
ogy encompasses more than incorporating novel mathe-

matical and statistical methods in the measurement pro-
cess. Other EMNs are addressing other aspects. To name
one, EMN Advanced Manufacturing [7] addresses the re-
quired new and enhanced metrology methods needed in
advanced manufacturing to assure the quality of manu-
facturing processes and the resulting products in the con-
text of advanced manufacturing. As digital methods and
automatedmeasurements are of high-interest to advanced
manufacturing, this EMN is also very relevant for the dig-
ital transformation of industry, be it more focusing on the
hardware side of measurements.

6 Conclusion

In this paper we gave a short overview of how the digi-
tal transformation of society is present in metrology in-
stitutes and in measurement solutions. We discussed the
metrological counterpart of digital twins, the advance of
AI in measurement models and quality control and the
emergence of self-X-solutions. Arguably the most relevant
self-X-solution from a metrological point of view is self-
calibration. This is conceptually possible with the redefi-
nition of the SI in terms of fundamental natural constants
which are available anywhere and anytime. Society is now
waiting for technological solutions which indeed imple-
ment primary metrological reference standards in a small
format (e. g., on a chip) at affordable cost. This would en-
able one-step-traceability solutions without the need of
sending the equipment to an NMI or secondary laboratory
for calibration. However, we don’t expect that these ‘SI on
a chip’ solutions will be available for all relevant quanti-
ties in thenear future, and theywill probably have ahigher
measurement uncertainty than the reference standards at
metrology institutes. The need for NMIs will thus also re-
main in future.

Solutions based on AI can make new measurements
possible or existing measurements faster. However, we ex-
pect that at NMIs, at the top of the traceability chain, pri-
mary instruments realizing the SI units will continue to be
based on well-understood fundamental physical laws and
associated well-understood equations. For primary stan-
dards AI can helpwith quality control, but we don’t expect
it to be an essential part of the primary instrument itself in
the near future. A large research topic for NMIs is how to
validate (secondary) measurement instruments and pro-
cesses that heavily rely on AI.

European collaboration between NMIs is essential in
order to prioritize the research topics in the digitalization
domain, share the workload and prevent duplication of
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work. For mathematical, statistical and AI related topics
the EMN MATHMET is coordinating this, whereas other
EMNs address other topics.

Only the future will really tell us which new and
unforeseen opportunities the digital transformation of
metrology will offer to themetrological community and its
stakeholders.
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